|
Definition of Isomorph
1. n. A substance which is similar to another in crystalline form and composition.
2. n. An animal, plant, or group having superficial similarity to another, although phylogenetically different.
Definition of Isomorph
1. Noun. Anything that exhibits isomorphism ¹
¹ Source: wiktionary.com
Definition of Isomorph
1. something similar to something else in form [n -S]
Medical Definition of Isomorph
1. A substance which is similar to another in crystalline form and composition. See: Isomorphous. Source: Websters Dictionary (01 Mar 1998)
Lexicographical Neighbors of Isomorph
Literary usage of Isomorph
Below you will find example usage of this term as found in modern and/or classical literature:
1. Chemical German: An Introduction to the Study of German Chemical Literature by Francis Clifford Phillips (1915)
"Isomerie, /., isomerism. isomorph, isomorphous. isomorphie, /.. ) isomorphismus, ,„., }
isomorphism. jagen, i., to chase, hunt. ..."
2. Zeitschrift Für Kristallographie, Kristallgeometrie, Kristallphysik (1905)
"Chlor, Brom und Jod werden infolge ihrer chemischen Analogie in ihren Verbindungen
als isomorph betrachtet. Es geschieht dies wohl mit Hecht, wenn auch die ..."
3. The Constructive Development of Group-theory: With a Bibliography by Burton Scott Easton (1902)
"If H is not self-conjugate and contains no self-conjugate subgroup of G, then G
has an isomorph, transitive and of degree g/h. And, conversely, if G has ..."
4. Chemical German: An Introduction to the Study of German Chemical Literature by Francis Clifford Phillips (1915)
"Isomerie, /., isomerism. isomorph, isomorphous. isomorphie, /.. ) isomorphismus, ,„., }
isomorphism. jagen, i., to chase, hunt. ..."
5. Zeitschrift Für Kristallographie, Kristallgeometrie, Kristallphysik (1905)
"Chlor, Brom und Jod werden infolge ihrer chemischen Analogie in ihren Verbindungen
als isomorph betrachtet. Es geschieht dies wohl mit Hecht, wenn auch die ..."
6. The Constructive Development of Group-theory: With a Bibliography by Burton Scott Easton (1902)
"If H is not self-conjugate and contains no self-conjugate subgroup of G, then G
has an isomorph, transitive and of degree g/h. And, conversely, if G has ..."