Definition of Inverse function

1. Noun. A function obtained by expressing the dependent variable of one function as the independent variable of another; f and g are inverse functions if f(x)=y and g(y)=x.


Definition of Inverse function

1. Noun. (mathematics) A function that does exactly the opposite of another; formally the inverse function f^{-1}\! of a function f\! exists such that: \forall x . f(x) = y \implies f^{-1}(y) = x. ¹

¹ Source: wiktionary.com

Lexicographical Neighbors of Inverse Function

inveracity
inverecund
inverisimilitude
inverisimilitudes
inverities
inverity
invermination
inverness
invernesses
inverse
inverse-square law
inverse Fourier transform
inverse Fourier transforms
inverse anaphylaxis
inverse density dependence
inverse function (current term)
inverse functions
inverse hyperbolic function
inverse hyperbolic functions
inverse image
inverse images
inverse limit
inverse matrices
inverse matrix
inverse ocular bobbing
inverse square law
inverse symmetry
inverse syntropy
inverse system
inverse trigonometric function

Other Resources:

Search for Inverse function on Dictionary.com!Search for Inverse function on Thesaurus.com!Search for Inverse function on Google!Search for Inverse function on Wikipedia!

Search