Definition of Yoneda embedding

1. Noun. (category theory) Given category \mathcal{C}, a '''Yoneda embedding''' for this category is a functor \phi such that for any object ''A'' in \mathcal{C}, \phi: A \mapsto h^A and for any morphism f:B \rightarrow A in \mathcal{C}, \phi: f \mapsto \eta: h^A \rightarrow h^B where the natural transformation ''η'' has components \eta_X: s \mapsto s\circ f . Then \phi: \mathcal{C}^{op} \rightarrow [\mathcal{C},\mathcal{S}ets]. Otherwise, it is a functor \phi such that \phi: A \mapsto h_A and for any f:A \rightarrow B in \mathcal{C}, \phi: f \mapsto \eta: h_A \rightarrow h_B where ''η'' has components \eta_X: s \mapsto f\circ s . Then \phi: \mathcal{C} \rightarrow [\mathcal{C}^{op}, \mathcal{S}ets] . ¹

¹ Source: wiktionary.com

Lexicographical Neighbors of Yoneda Embedding

Yogi Berra
Yogiism
Yogiisms
Yogis
Yogyakarta
Yoism
Yoko Ono
Yokohama
Yokuts
Yola
Yolanda
Yolngu
Yom Kippur
Yom Kippur War
Yomi
Yoneda embedding (current term)
Yoneda lemma
Yonkers
Yonne
Yonner
Yonners
York
York Chocolate Cat
York ham
Yorke
Yorke's autolytic reaction
Yorkie
Yorkies
Yorks
Yorkshire

Other Resources:

Search for Yoneda embedding on Dictionary.com!Search for Yoneda embedding on Thesaurus.com!Search for Yoneda embedding on Google!Search for Yoneda embedding on Wikipedia!

Search